The generator matrix

 1  0  1  1  1 X^2+X  1  1 X^2+X  1  1  0  1  1 X^2  1  1  X  1  1  X  1  1 X^2  1  1  1  1  0 X^2+X  1  1  1  1  0 X^2+X  1  1  1  1  1  1  1  1  0 X^2  X  X X^2  X  X X^2  X  X  X  X  0  X  X X^2  1  1  1  1  1
 0  1 X+1 X^2+X X^2+1  1  0 X+1  1 X^2+X X^2+1  1 X^2 X^2+X+1  1  X  1  1 X^2 X^2+X+1  1  X  1  1  0 X^2+X X+1 X^2+1  1  1  0 X^2+X X+1 X^2+1  1  1 X^2  X X^2  X X^2+X+1  1 X^2+X+1  1  X  1  0 X^2+X  1 X^2  X  X  1  1  0 X^2+X  X X^2  X  X  0  0 X^2 X^2  0
 0  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0 X^2 X^2 X^2  0  0 X^2  0 X^2  0 X^2 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0 X^2 X^2 X^2 X^2  0  0  0  0  0  0  0  0 X^2 X^2  0  0

generates a code of length 65 over Z2[X]/(X^3) who�s minimum homogenous weight is 64.

Homogenous weight enumerator: w(x)=1x^0+15x^64+88x^65+12x^66+8x^69+4x^74

The gray image is a linear code over GF(2) with n=260, k=7 and d=128.
This code was found by Heurico 1.16 in 0.113 seconds.